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Abstract: In the 1960's Florence MacWilliams proved two important results in coding theory. The first 

result is that all linear codes over finite fields satisfy the MacWilliams identities. The second result is the 

MacWilliams Extension Theorem. This theorem proved the equivalence of two notions of code equivalence 

over finite fields with respect to Hamming weight. 

This paper studies the evolution of the extension theorem from the classical case of linear codes defined 

over finite fields, to the case of linear codes defined over finite rings and finally to linear codes defined 

over finite modules. 
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Introduction  

 

Coding theory lies in the intersection of three disciplines, mathematics, computer 

science and engineering. Research in this area is both application-driven, as in the case of 

computer science and engineering, or is theoretical, as in the case of mathematics. Of the 

points that have grabbed the attention of all three disciplines is the work of Florence 

MacWilliams. In the 1960's MacWilliams proved two fundamental results in coding 

theory, the MacWilliams identities and the MacWilliams Extension Theorem. The 

MacWilliams identities are a tool for studying the weight distributions of codes and have 

many applications in coding theory. The MacWilliams Extension Theorem gains its 

importance from the fact that it provides a method of identifying when two codes are 

equivalent. MacWilliams proved her results for codes defined over finite fields. This 

paper discusses the evolution of the MacWilliams Extension Theorem as the definition of 

a code was generalized from being over a finite field, to being over a finite ring, and 

eventually to being over a finite module. 

 

Codes over Finite Fields 

 

Codes were originally defined over finite fields, i.e. the code words used finite 

fields as their alphabet. In the following, Fq denotes the finite field containing q elements, 

where q is necessarily a prime power. We start by giving a formal definition of a linear 

code over a finite field and defining a weight function on these codes. In computer 

science, the most widely used field is F2 which produces what is known as binary codes. 
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Definition 2.1 (Linear Code over Fq) 

 

A linear code C of length n over the finite field Fq is a subspace of the vector space Fq
n
. 

An element c=c0 c1... cn-1 in C is called a codeword. 

 

Definition 2.2 (Weight) 

 

A weight defined on the finite field Fq is a function w: Fq →  with w(0)=0. This function 

is then extended naturally to a weight on Fq
n
 by  

 

The most commonly used weight is the Hamming weight defined as follows, 

 

Definition 2.3 (Hamming Weight) 

 

Let C be a linear code of length n over Fq, then the Hamming weight of a codeword c=c0 

c1... cn-1 in C is denoted by wt(c) and it is the number of nonzero entries in the vector c, in 

other words, wt(c)=|{i: ci ≠ 0, 0 ≤ i ≤ n-1 }|. 

 

Definition 2.4 (Preserve Weight) 

A function f: Fq
n
 → Fq

n
 is said to preserve the weight w if w(x) = w(f(x)) for every x∊ 

Fq
n
. 

 

It is important to know when two codes are considered to be essentially the same.  The 

natural definition of the equivalence of two codes is the existence of a linear isomorphism 

between them that preserves Hamming weight. This is known as an isometry. 

 

Definition 2.5 (Isometry) 

 

Let C1 and C2 be two codes of length n over Fq
n
 of the same dimension. We say that θ: C1 

→ C2 is an isometry if θ is a one-to-one linear transformation that preserves Hamming 

weight. If there is an isometry from C1 to C2, we say that the two codes are isometric. 

 

Another notion of equivalence also existed, defining two codes to be monomially 

equivalent if there is a monomial transformation taking one code to the other; a monomial 

transformation basically permutes and re-scales the coordinates of each code word. In 

fact the restriction of such a transformation to the code gives a linear, Hamming weight 

preserving, isomorphism, so that any two codes that are monomially equivalent must also 

be isometric. 
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Definition 2.6 (Monomial Equivalence) 

Let C1 and C2 be two codes of length n over Fq
n
 of the same dimension. Then C1 and C2 

are monomially equivalent if there exists a monomial n x n matrix A (a matrix with only 

one nonzero entry in each row and column) such that C2= {xA: x ∊ C1}. 

 

Note that in the field F2, monomial equivalence and permutation equivalence have the 

same meaning. In other words two codes of length n over F2 are monomially equivalent if 

and only if we can obtain one code from the other via a permutation matrix, which 

permutes the coordinates of each code word. 

 

Given a linear, Hamming weight preserving isomorphism between two codes, is it 

possible to extend this isomorphism to a monomial transformation of all of Fq
n
? In the 

early 1960's Florence MacWilliams proved that it is always possible to find this extension 

and therefore the two notions of equivalence are in fact the same. This result is known as 

the ―The MacWilliams Extension Theorem‖ or ―The MacWilliams Equivalence 

Theorem‖. 

 

Theorem 2.1 (MacWilliams Extension Theorem) 

 

Two linear codes of length n are isometric if and only if they are monomially equivalent. 

 

MacWilliams proved this theorem in her doctoral dissertation [11]. In 1978 another proof 

was presented by Bogart, Goldberg and Gordon in [1]; their proof utilized the vector 

space structure of a finite field and its relation to matrices. A different technique of proof 

was also provided by Ward and Wood in [13] using the linear independence of 

characters. Wood later generalizes this character theoretic proof to linear codes defined 

over finite modules. 

 

Since a code over a finite field is a linear space, it is natural to speak of its dual. 

 

Definition 2.7 (Dual Code) 

 

Given a linear code C of length n over the field Fq, its dual code is defined as  

 
 

An important aspect of a code is the Hamming weight of its code words and the number 

of code words having a certain Hamming weight. These elements come into play in the 

definition of the Hamming Weight Enumerator. 

 

Definition 2.8 (Hamming Weight Enumerator) 

The Hamming weight enumerator of a linear code C of length n is given by,  
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where Aj denotes the number of code words in C of Hamming weight j. 

 

Credit is owed Florence MacWilliams for another vital result in coding theory. In the 

1960's MacWilliams proved that codes over finite fields satisfy the MacWilliams 

identities. These identities are equations that relate the Hamming weight enumerator of a 

code to that of its dual. 

 

Theorem 2.2 (MacWilliams Identities) 

 

Suppose C is a linear code of length n over a finite field Fq. The Hamming weight 

enumerators of C and its dual C
┴
 satisfy the following, 

 
 

The following theorem, relates linear codes over finite fields to their respective duals. 

The next theorem together with the MacWilliams identities were to become the model 

theorem for future generations of researchers who worked with, the more general, codes 

over rings and codes over modules. 

 

Theorem 2.3 

 

Suppose C is a linear code of length n over a finite field Fq. The dual code C
┴ 

satisfies: 

 

1. C
┴  

 is a subset of Fq
n
, 

2. C
┴ 

 is a linear code of length n, 

3. (C
┴
) 

┴ 
 = C , 

4. dim(C
┴
) = n - dim(C). 

 

 

Codes over Finite Rings 

 

Although known beforehand, interest in codes over finite rings began in the early 1990's 

with the work of Hammons, Calderbank, Sloane, Kumar and Solé. They published their 

findings in [8]; the authors discovered that certain well known non-linear binary codes 

can be constructed as the image of linear codes over the ring 4. As interest in this area of 

research was renewed, mathematicians started to ask what types of codes over finite rings 

satisfy the crucial results of coding theory, such as the MacWilliams Extension Theorem 

and the MacWilliams identities. 

 

Definition 3.1 (Linear Code over R) 

 

Let R be a finite ring. A right (resp. left) linear code C is a right (resp. left) submodule C 

of R
n
. Note that unlike the case of finite fields, R

n
 is not necessarily a vector space. 
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Two types of rings prove to be quite interesting in relation to coding theory. These are 

quasi-Frobenius and Frobenius rings. Recall that Artinian rings are rings that satisfy the 

descending chain condition on ideals. 

 

Definition 3.2 (Quasi-Frobenius Ring) 

 

A ring R is quasi-Frobenius if R is Artinian and self-injective, i.e. injective as a module 

over itself. 

 

Recall the definition of the Jacobson radical of a ring, rad(R), which is the intersection of 

all maximal right(or left) ideals of R. Also recall that the socle of R, soc(R), is defined to 

be the sum of all the minimal right submodules of R. These two concepts are needed to 

define Frobenius rings. 

 

Definition 3.3 (Frobenius Ring) 

 

A ring R is Frobenius if soc(RR)  R(R/ rad(R)) and  soc(RR)  (R/ rad (R))R. 

 

In the search for answers concerning the types of rings satisfying the MacWilliams 

Extension Theorem and MacWilliams identities, Wood singled out finite Frobenius rings 

in [14]. He generalized the character theoretic proof of the extension theorem over finite 

fields in [13] to prove the theorem for Frobenius rings. He followed Gleason's proof of 

the MacWilliams identities, using the Fourier Transform and Poisson summation formula 

to relate the weight enumerators of a code and a notion of its dual, namely the character 

theoretic annihilator. So given a linear code C over the ring R, the annihilator 

 where  is the ring of characters of R (all 

homomorphisms from R to  / ), acts as the dual of C in that it satisfies the 

MacWilliams identities and MacWilliams' model theorem. 

 

Theorem 3.1  (Extension Theorem) 

 

Let R be a finite Frobenius ring. Suppose C is a right linear code of length n over R, and 

suppose  f: C → R
n
 is a right linear homomorphism which preserves Hamming weight. 

Then f extends to a right monomial transformation of R
n
. 

 

Greferath and Schmidt [7] gave another proof of this result using combinatorial results. 

Wood was also able to prove a partial converse in [14], in the case of finite commutative 

rings, where the definitions of quasi-Frobenius rings and Frobenius rings coincide. 

 

Theorem 3.2 

 

Suppose R is a finite commutative ring, and suppose that the extension theorem holds 

over R with respect to Hamming weight. Then R is Frobenius. 
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The question remained if the full converse of the extension theorem is true; i.e. any finite 

ring for which the extension theorem holds with respect to Hamming weight must 

necessarily be Frobenius. In 1997, Wood gave an example of a non-quasi-Frobenius ring 

that does not satisfy the theorem. Researchers attempted to prove that any finite ring for 

which the extension theorem holds must be quasi-Frobenius. But another result was 

found in 2000 in [7], where Greferath and Schmidt gave a counterexample of a quasi-

Frobenius ring that did not satisfy the theorem. These results implied that the full 

converse of Wood's extension theorem may in fact be true. 

 

As the search continued to try and prove the full converse of Wood's Extension Theorem, 

mathematicians were also considering general weight functions opposed to only the 

Hamming weight. Wood was able to prove that if R is a Frobenius ring, then the 

extension theorem holds with respect to symmetrized weight compositions [15]. The 

converse is still not known. 

 

Definition 3.4 (Symmetrized Weight Composition) 

 

Let G be a subgroup of the automorphism group of a finite ring R. Define ∼ on R by a ∼ 

b if and only if a=η(b) for some η ∊ G. Let R/G denote the equivalence classes of this 

relation. The symmetrized weight composition is a function swc: R
n
 × R/G → ℚ defined 

by,  where x=(x0,…, xn-1) ∊ R
n
 and r ∊ R. 

 

All extension properties proven for the Hamming weight apply to homogeneous weights 

and vice versa as can be found in the works of Greferath, Schmidt, Nechaev and 

Wisbauer in [4], [6] and [7]. The definition of a homogeneous weight follows. 

 

Definition 3.5 (Homogeneous Weight) 

 

Let R be a finite ring and w be a weight defined on R. We say that w is homogeneous if: 

 

1. all units u of R satisfy the following, w(ur)=w(r) for every r in R, 

2. there exists a rational number γ such that 

 
 

A broader question presented itself, if R is a finite ring and w a weight on R, are there 

conditions on w to guarantee that the extension theorem will hold for codes over R with 

respect to the weight w? In [15], the author found a condition on weights defined on a 

special case of rings, namely, finite chain rings. A chain ring is a ring whose ideals form 

a chain. Note that finite chain rings are Frobenius. A weight w on a ring R is said to be 

maximally symmetric if it has the property that all automorphisms of R preserve w and 

that all units u of R satisfy w(ur)=w(r) for every r in R. 
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Theorem 3.3 

 

Let R be a finite chain ring and w a maximally symmetric weight defined on R. Let 

rad(R) = 𝔪 = Rm = mR for some m in 𝔪\ 𝔪 
2
 and let e be the smallest positive integer 

such that 𝔪e
 = 0. Then, R has the extension property with respect to the weight w if and 

only if w(m
e-1

) ≠ 0. 

 

In [16], the author was able to prove a condition on general weight functions defined on 

finite chain rings. The result is more general than the previous theorem as it is for a 

weight that does not necessarily satisfy the condition that ―all automorphisms of R 

preserve w and that all units u of R satisfy w(ur) = w(r) for every r in R‖. However, the 

condition is quite complex.  

 

Codes over Finite Modules 
 

In 1999, a group of mathematicians [10] developed a theory of codes taking their 

alphabet from modules that are defined over finite commutative rings instead of the 

alphabet being taken from finite fields or finite rings. Later in [6], this idea was 

generalized so that codes could take their alphabet from any finite module (defined over 

any arbitrary ring). Dinh and López-Permouth [3] attempted to characterize the finite 

rings and modules which satisfy the ring and/or module version of the MacWilliams 

Extension Theorem. They were able to prove some results for special cases of rings and 

modules. Greferath, Nechaev and Wisbauer had already shown in [6] that the extension 

theorem holds with respect to Hamming weight if the module we take our alphabet from 

is a Frobenius bi-module. And so once again, the question remained whether the full 

converse of Wood's extension theorem is true for Frobenius modules. Dinh and López 

[2], [3] were, however, able to lay out a strategy to prove the converse of the extension 

theorem. Their strategy was to reduce the proof of the converse of the extension problem 

to solving a problem concerning matrix modules. Following this strategy, Wood was able 

to prove the full converse of the extension theorem in 2006 [17]. We give a few 

definitions before stating known results for the extension theorem over finite modules. 

 

Definition 4.1 (Linear Code over a Module) 

 

Let R be a finite ring with unity and let A be a finite R-module, A will serve as the 

alphabet for the code. A linear code of length n over the alphabet A is a left R-submodule 

C of A
n
. 

 

In order to translate the MacWilliams extension theorem to the case of codes over 

modules, we still need a few more definitions. Also note that by convention, inputs to the 

homomorphisms of left R-modules will be written on the left of the homomorphism. 
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Definition 4.2 (Monomial Transformation) 

 

A monomial transformation of A
n
 is an R-linear automorphism T of A

n
 of the form 

 where (a1,...,an) in A
n
, ζ is a permutation of {1,2,...,n} 

and η1,...,ηn in Aut(A). If η1,...,ηn in a subgroup G of Aut(A), we say that T is a G-

monomial transformation of A
n
. 

 

Definition 4.3 (Weight) 

 

Similar to weights defined over finite fields, a weight w on an R-module A is a function 

w:A→ℚ  with w(0)=0. This definition is naturally extended to A
n
 by defining 

 

 

Definition 4.4 (Symmetry Groups) 

 

Given a weight w:A→ℚ  , define the left and right symmetry groups of w by 

Gl := { u ∊ U(R) : w(ua)=w(a), ∀a ∊ A}.  

Gr := { η ∊ Aut(A) : w(aη)=w(a), ∀a ∊ A }.  

 

In the above definition, U(R) denotes the group of units of the ring R. Note that Gr is the 

group of all automorphisms of A that preserve w. If a certain weight function w satisfies 

Gl= U(R) and Gr=Aut(A), we say that w is maximally symmetric. 

 

Note that every η in Gr preserves the weight w, consequently, a Gr-monomial 

transformation preserves w. Now we give the corresponding definition for monomial 

equivalence of codes over modules. 

 

Definition 4.5 (Monomial Equivalence) 

 

Assume the alphabet is the left R-module A, and that a weight w is defined on A with 

symmetry groups Gr and Gl. Let C1, C2 be two linear codes of length n over A. If there 

exists a Gr-monomial transformation T of A
n
 with C1 T=C2, we say that C1 and C2 are Gr-

monomially equivalent. 

 

Observe that if two codes are monomially equivalent via the transformation T, then the 

restriction of T to the code C1 is an R-linear isomorphism that preserves the weight w. 

This proves one implication of the analogue of MacWilliams extension theorem when 

translated to codes over modules. The converse is described as a property, namely the 

―extension property‖. 
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Definition 4.6 (Extension Property) 

 

The alphabet A has the extension property with respect to the weight w if: for any two 

linear codes C1, C2 of length n over A, if there is an R-linear isomorphism f:C1→ C2 that 

preserves w, then f can be extended to a Gr-monomial transformation T of A
n
. 

 

We now wish to find necessary and sufficient conditions for an alphabet A equipped with 

a weight w to have the extension property. We first consider the Hamming weight, wt, 

defined, as for finite fields, by wt(0)=0 and wt(a)=1for nonzero a in A. Note that the 

symmetry groups are maximal for Hamming weight. First we define Frobenius 

bimodules. 

 

Definition 4.7 (Frobenius Bimodule) 

 

Let A be an (R, R) bimodule over the ring R. We say that A is Frobenius if RA ≌ R  and 

AR ≌ R, where   is the character ring of R. 

 

Let R be a ring. If we consider our alphabet to be the ring R as a bimodule over itself, 

then we know by [6] that the extension property holds for R with respect to Hamming 

weight if R is Frobenius. This result is a consequence of the following theorem and the 

results known for codes over finite rings. 

 

Theorem 4.1 

 

A finite ring R is Frobenius if and only if RRR is a Frobenius bimodule. 

 

As a direct consequence of Theorems 4.1 and 3.1, we obtain the following result. 

 

Theorem 4.2 

 

If R is a finite Frobenius ring, then the alphabet A=R has the extension property with 

respect to Hamming weight. 

 

The following theorem first appeared in [6], and in [19], Wood gives a proof that relies 

on generating characters and the linear independence of characters. 

 

Theorem 4.3 

 

Let R be a finite ring and A be a Frobenius bimodule over R. Then A has the extension 

property with respect to Hamming weight. 
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In [2], Dinh and López-Permouth were able to prove that the concepts of pseudo-

injectivity and having the extension property are equivalent for codes of length 1. We 

give the definition of pseudo-injective followed by the proposition proved in [2]. 

 

Definition 4.8 (Pseudo-Injective) 

 

A left module M over a ring R is pseudo-injective if, for every left R-submodule B of M 

and every injective R-linear mapping f: B →M, the mapping f extends to an R-linear 

mapping f‘: M → M. 

 

Proposition 4.4 

 

The alphabet A has the extension property for linear codes of length 1 with respect to 

Hamming weight if and only if A is a pseudo-injective module over R. 

 

The previous proposition is used to prove a stronger result that was published in 2009 in 

[19] giving sufficient conditions for a module alphabet to satisfy the extension property. 

 

Theorem 4.5 

 

An alphabet A has the extension property with respect to Hamming weight if 

i. A is pseudo-injective, and 

ii. soc(A) is cyclic. 

 

This ends our discussion of sufficient conditions and begins the search for necessary 

conditions, the elusive converse of the extension theorem for codes over finite rings or 

modules. As mentioned before, Wood was able to prove the full converse of the 

extension theorem by following the strategy laid down by Dinh and López-Permouth in 

[2] and [3]. Their strategy consisted of 3 steps (as explained by Wood in [17]): 

 

1. If a finite ring R is not Frobenius, show that its socle contains a copy of a 

particular type of module defined over a matrix ring. 

2. Show that counterexamples to the extension theorem exist in the context of linear 

codes defined over this particular matrix module. 

3. Show that the counterexamples over the matrix module pull back to give 

counterexamples over the original ring. 

 

Steps 1 and 3 were completed in [3] and Wood provided the counterexample required in 

step 2 completing the proof of the full converse in [17]. We state the main theorems for 

the three steps as given in [17]. 
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Theorem 4.6 (Step 1) 

 

If a finite ring R is not Frobenius, then there exists an i, with 1≤ i ≤ n and k > μi such that 

kTi occurs in the direct sum decomposition of soc(RR). 

 

In the preceding theorem the μi's refer to the following isomorphism,  

 
where qi are prime powers and Fqi is the finite field with qi elements. And the Ti's are the 

simple left 𝕄μi(Fqi)-modules Ti := 𝕄mi×1(Fqi).  

 

Theorem 4.7 (Step 2) 

 

Let R= 𝕄m(Fq) be the ring of all m × m matrices over the finite field Fq, and let 

A=𝕄m,k(Fq) be the left R-module of all m × k matrices over Fq. If k>m, then there exist 

linear codes C, C' of length N over A, with N = ∏(1+qi), where the product is over i from 

1 to k-1, and an R-linear isomorphism f: C → C'$ that preserves Hamming weight, yet C 

and C' are not monomially equivalent because one of the codes has an identically zero 

component, while the other does not. I.e. the alphabet A does not have the extension 

property. 

 

Theorem 4.8 (Step 3) 

 

Every finite ring that has the extension property with respect to Hamming weight is 

Frobenius. 

 

This gives us the full converse of Wood's extension theorem if the alphabet in question is 

a finite ring. The following theorem [19] gives the converse of Theorem 4.5 and 

necessary conditions for a module to have the extension property. 

 

Theorem 4.9 

 

If the alphabet A has the extension property with respect to Hamming weight, then: 

 

i. A is pseudo-injective, and 

ii. soc(A) is cyclic. 
 

 

Current Research 

 

The answer to the main question regarding the extension theorem has been found 

for Hamming weight, however, the search continues for linear codes defined over 

modules equipped with arbitrary weight functions. In 2013, results were published in [5] 

putting sufficient conditions on weights to satisfy the extension theorem. However, these 
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results apply to a special case of rings, namely, the direct product of finite chain rings, 

and to weights with maximal symmetry. 

 

There are other areas of research; some mathematicians are considering particular rings 

and examining whether the rings satisfy MacWilliams Extension Theorem and 

MacWilliams identities with respect to certain weights. For example, the authors of [20] 

proved the MacWilliams identities for the complete, symmetrized and Lee weight 

enumerators for codes over the ring ℤ4 + u ℤ4, and they constructed self dual codes over 

this ring. Others have considered the ring Rk=F2[x1,…,xk]/<x1
2
,…,xk

2
 > in [12], where it 

is proved that Lee, symmetric and Hamming weight enumerators are satisfied for codes 

over the ring Rk. 
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