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Abstract: In this paper we provoke the question of whether the sequence ...][][][ 32  nINDnINDnIND  is 

strictly increasing, i.e., the question of whether increasing the depth of iteration increases the expressive 

power of defining by induction. Solving this question should have a deep impact on computer science as 

well as on mathematical logic since it is a question in a subject on the crossroads between them, namely, 

descriptive complexity. We shall mention a potential way of tackling the problem.  

 

 

Introduction 

 

In 1979 Aho and Ullman noted that first-order logic is unable to express the 

transitive closure of a given relation, and suggested extending it by adding the least fixed-

point operator [1],[2]: If ),...,,( 1 kxxR  is an R -positive first-order formula, where R  is 

a relation symbol of arity k , then )( ,...,
1

, 
k

xxRLFP  is interpreted in any finite structure A  

as the least fixed point of the map A  from k -ary relations on the universe of A  to k -

ary relations on the universe of A  given by 

. 

Since   is R -positive i.e. any occurrence of R  in   lies in the scope of an even number 

of negations, then the map A  is monotone, and hence 

 )()()()()( 32 AAA  and since A  is finite, then there is  

such that )()(=)()( 1  rr AA  . It can be easily seen that )()( rA  is the least fixed 

point. [3]  
 

Example 
 

In finite graphs, the reflexive transitive closure of the edge relation is the least 

fixed point of the formula )),(),((==:),,( yzRzxEzyxyxR   i.e. for any vu,  there 

is a path from u  to v  (possibly of length 0 if vu = ) iff ),)(( ,, vuLFP yxR   holds. In any 

finite graph G , for any 1k , |),{(=)()( yxk G  there is a path from x  to y  of length 

1} k , and since the distance ( the shortest length of a path ) from a vertex to another 

vertex connected to it in G  is at most 1n  if , the fixed point is obtained at most 

at nk =  i.e. after n  iterations of the function G  on  . 

mailto:amena.3assem@gmail.com


Proceedings of Basic and Applied Sciences  

 ISSN 1857-8179 (paper). ISSN 1857-8187 (online). http://www.anglisticum.mk   
 Proceedings of the 1st International Conference on New Horizons in Basic and Applied Science, Hurghada – Egypt, 

Vol 1(1), 2013.    

 

© The authors. Published by Info Media Group & Anglisticum Journal, Tetovo, Macedonia. 

Selection and peer-review under responsibility of ICNHBAS, 2013 http://www.nhbas2013.com  

66 

 

 

)(LFPFO  is defined to be the logic obtained by adding the least fixed-point 

operator )(LFP  to first order logic. Neil Immerman proved that a class of ordered finite 

structures is definable in )(LFPFO  if and only if it is decidable by a deterministic 

polynomial-time Turing machine (i.e. it is in the complexity class P ) [5],[3]. This 

showed the importance of )(LFPFO  in descriptive complexity. The depth of an R -

positive formula ),...,,( 1 kxxR  in a finite structure A  of size n , in symbols || A , is 

defined to be the minimum r  such that )()(=)()( 1  rr AA   (this r  is always less 

than or equal to kn ). The depth of   as a function of n is defined by 

 [3]. For example, the depth of   in the example above is n . 
)]([ nfIND  is the sub-logic of )(LFPFO  in which only fixed points of first-order 

formulas   for which ||  is )]([ nfO  are included. Note that,    

][=)(
1=

k

k
nINDLFPFO 


)[3]. The problem is to investigate the power of the depth of 

first-order formulas in defining relations inductively as least fixed points. In particular, 

the problem is to investigate the strictness of  ][][][ 32 nINDnINDnIND . 

 

The Different Versions of the Problem 

 

In this section we exhibit different versions of the problem. We begin by 

introducing some definitions and theorems, from [3], necessary for showing the 

equivalence of the different versions. 

 

Lemma 1  Every R -positive formula ),...,,( 1 kxxR  is equivalent to a formula of the 

form  where the iQ ’s are quantifiers, the 

iM ’s are quantifier free formulas in which R  does not occur, and ),( Mx  means 

)(  Mx , and ),( Mx  means ).(  Mx   

  

Proof. cf. [3]  

 

We write QB  to denote the quantifier block ),...)(,)...(,( 11111  sksss MxxMzQMzQ . Thus 

for any finite structure A  and any Nr , , here 
rQB][  means QB  literally repeated r  times. It follows immediately that if )(|=| nt   

and A  is any structure of size n  then 

  for all 
kAa . [3] 

 

Definition 2.1 )]([ ntFO  is defined to be the class of properties definable by quantifier 

blocks iterated )]([ ntO  times [3]. A class ][STRUCS   ( where   is a finite 

vocabulary and ][STRUC  is the class of all finite  -structures ) is a member of 
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)]([ ntFO  if and only if there exist quantifier free formulas siM i ,0 , a quantifier 

block ),)...(,(= 111 sss MxQMxQQB , a tuple of constants c , and a function 

)]([=)( ntOnf , such that for all ][STRUCA , . 

 

Thus Lemma1 implies that )]([)]([ ntFOntIND   for all )(nt , i.e. for every class S  of 

finite  -structures ( for any finite vocabulary   ), if S  is definable in )]([ ntIND  then 

)]([ ntFOS . 

 

Definition 2.2 We say that a function NN:s  is time constructible iff  there is a 

deterministic Turing machine running in time )]([ nsO  that on input n0 , i.e., n  in unary, 

computes )(ns  in binary.  

 

Lemma 2  For any polynomially bounded )(nt  and every class S  of finite  -structures ( 

for any finite vocabulary   ), if S  is decidable in parallel time )(nt  then S  is definable 

in )]([ ntIND .  

  

Proof. cf. [3] for the proof and the definition of parallel time computation.  

 

Lemma 3  For every polynomially bounded parallel time constructible )(nt  and every 

class S  of finite  -structures ( for any finite vocabulary   ) , if )]([ ntFOS  then S  is 

decidable in parallel time )(nt .  

  

Proof. cf. [3]  

 

Theorem 1  For every polynomially bounded parallel time constructible )(nt  and every 

class S  of finite  -structures ( for any finite vocabulary   ) the following are equivalent 

:   1.  S  is decidable in parallel time )(nt .  2.  S  is definable in )]([ ntIND .  3.  

)]([ ntFOS .  

 

Proof. Follows directly from Lemmas 1, 2, and 3.  

 

Thus the question of the strictness of the sequence ...][][][ 32  nINDnINDnIND  is 

equivalent to the questions of the strictness of the following two sequences 

...][][][ 32  nFOnFOnFO  

...][][][ 32  nCRAMnCRAMnCRAM  where )]([ ntCRAM  is the class of problems 

decidable in parallel time )(nt  with the kind of parallel time computation introduced in 

chapter 5 of [3].  

There is also another equivalent version of the question in computational complexity, a 

one related to circuit complexity:  
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Definition 2.3 A boolean circuit is a directed, acyclic graph,
 

][),,,,,,(= cSTRUCrIGGGEV C  with   rIGGGEc ,,,,,= where E  is of 

arity 2  and represents the edge relation, G  is of arity one and consists of the internal 

vertices that are and-gates, G  is of arity one and consists of the internal vertices that 

are or-gates, G  is of arity one and consists of the internal vertices that are not-gates, 

and I  is of arity one and consists of the leaves that are on i.e. carry the value 1, where a 

leaf is a vertex with no edges entering it. r  is a constant symbol that represents the root 

of the tree.  

 

Definition 2.4 A query is any mapping ][][:  STRUCSTRUCI   from the finite 

structures of one vocabulary to the finite structures of another vocabulary, that is 

polynomially bounded. That is, there is a polynomial p  such that for all ][STRUCA , 

 . 

A boolean query is a map {0,1}][: STRUCIb . A boolean query may also be thought 

of as a subset of ][STRUC  - the set of structures A  for which 1=)(AI .  

 

Definition 2.5 (First-Order Queries) Let   and   be any two vocabularies where 

 sr ccRR ,...,,,...,= 11  and each iR  has arity ia , and let k  be a fixed natural number. A 

first-order query is a map  

      ][][:  STRUCSTRUCI   

defined by an 1 sr -tuple of first-order formulas, sr  ,...,,,...,, 110 , from ][FO . 

For each structure ][STRUCA  these formulas describe a structure  

][)( STRUCI A , 

 )()(

1

)()(

1 ,...,,,...,|,)(|=)( AAAAAA I

s

II

r

I ccRRII  

 

The universe of )(AI  is a first-order definable subset of kA , 

 

     
 

Each relation )(AI

iR  is a first-order definable subset of i
a

I |)(| A ,  

 

 
Each constant symbol 

)(AI

jc  is a first-order definable element of |)(| AI ,   

=)(AI

jc  the unique |)(|,...,1 AIbb k   such that  

 

 A first-order query is either boolean, and thus defined by a first-order sentence, or is a 

k -ary first-order query, for some k . 
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Definition 2.6 Let C  be a sequence of circuits 1,2,...}=|{= iCiC . Let 

][][: cs STRUCSTRUCI    be a query such that for all Nn , n

n CI =)(0 , where 

 Ss ,=  is the vocabulary of binary strings. That is, on input a string of n  zeros the 

query produces circuit n . If I  is a first order query, then C  is a first-order uniform 

sequence of circuits. 

 

Definition 2.7 (Circuit Complexity) Let )(nt  be a polynomially bounded function and let 

][STRUCS   be a boolean query. Then S  is in the (first-order uniform) circuit 

complexity class )]([ ntAC  iff there exists a first-order query 

][][: cs STRUCSTRUCI    defining a uniform class of circuits )(0= n

n IC  with the 

following properties:   

  1.  For all ][STRUCA ,  

        accepts A .  

  2.  The depth of nC  is )]([ ntO .  

 3.  The gates of nC  consist of unbounded fan-in "and" and "or" gates.  

  

Theorem 2 For all polynomially bounded first-order constructible )(nt , the following 

classes are equal:  

  

Proof. cf.[3]  

 

Thus our question is also equivalent to the question of the strictness of 

...][][][ 32  nACnACnAC  
 

What we suggest 

 

We expect the sequence to be strict and our expectation is motivated by a well-

known theorem from computational complexity, namely, the time hierarchy theorem for 

deterministic Turing machines [6],[7], which states that if gf ,  are time-constructible 

functions satisfying )]([=))((log)( ngonfnf , then  i.e. the 

class of queries decidable by )(nf -time deterministic Turing machines is strictly 

contained in the class of queries decidable by )(ng -time deterministic Turing machines 

( kn  and 1kn  satisfy the conditions of the theorem). From theorem 1 we know that the 

inductive depth equals parallel time i.e. the classes in )]([ ntFO  (or equally in )]([ ntIND ) 

are precisely the classes decidable in parallel time )(nt , and since the (sequential) time 

hierarchy does not collapse, we expect that the parallel time hierarchy does not collapse. 

We introduce some definitions and facts before mentioning our suggestion. 
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Definition 3.1 

 

( )(CQ , the queries computable in C ) Let ][][:  STRUCSTRUCI   be a query, and 

C  a complexity class. We say that I  is computable in C  iff the boolean query bI  is an 

element of C , where |),,{(= aiIb A  The i-th bit of ))(( AIbin  is }.""a And )(CQ  is the 

set of all queries computable in C : }.|{=)( CCCQ  bII  

 

Definition 3.2 (Many-One Reduction) 

Let C  be a complexity class, and let ][STRUCK   and ][STRUCH   be boolean 

queries. Suppose that the query ][][:  STRUCSTRUCI   is an element of )(CQ  with 

the property that for all ][STRUCA , HIK  )(AA Then I  is called a C -

many-one reduction from K  to H . We say that K  is C -many-one reducible to H , in 

symbols, HK C . For example, when I  is a first-order query, this is called a first-order 

reduction, in symbols fo . 

 

Definition 3.3 Let K  be a boolean query, Let C  be a complexity class. We say that K  is 

C -complete under first-order reductions if  1.  CK , and, 2.  for all CH , KH fo .  

  

Definition 3.4  
(Alternating Reachability)  

Let an alternating graph ),,,,(= tsAEVG  be a directed graph whose vertices are 

labeled universal or existential. VA  is the set of universal vertices. Let 

 tsAEag ,,,=  be the vocabulary of alternating graphs.  Let ),( yxPG

a  be the smallest 

relation on vertices of G  such that:  1.  ),( xxPG

a  2.  If x  is existential and ),( yzPG

a  

holds for    some edge ),( zx  then ),( yxPG

a . 3.  If x  is universal, and there is at least one 

edge leaving x , and ),( yzPG

a  holds for all edges ),( zx  then ),( yxPG

a . 

)},(|{= tsPGREACH G

aa  

 

It can be easily seen that aREACH  is definable in ][nIND  

 

Theorem 3 aREACH  is P -complete under first-order reductions.  

 

Proof. cf. [3]  

 

Since there are problems, such as alternating reachability, which are in ][nIND  and are 

P -complete under first-order reductions, it follows that if ][ knIND  - for some k  - is 

closed under first-order reductions then ][= knINDP  and the hierarchy collapses at the 
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k -th level. On the other hand if for every k , ][ knIND  is not closed under first-order 

reductions then ][ knINDP   for every k  and the hierarchy does not collapse, but this 

does not necessarily mean that the sequence is strict. We suggest tackling the problem by 

investigating whether ][ knIND  are closed under first-order reductions. 
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