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Abstract: In this paper, the estimation of stress-strength parameter   is considered When   the strength and 

stress respectively are two independent random variables of Burr Type XII distribution. The samples taken 

for X and Y are progressively censoring of type II. The maximum likelihood estimator (MLE) of R is 

obtained when the common parameter is unknown. But when the common parameter is known the MLE, 

uniformly minimum variance unbiased estimator (UMVUE) and the Bayes estimator of   are obtained. The 

exact confidence interval of R based on MLE is obtained. Also the performance of the proposed estimators 

is compared using the computer simulation. 
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 Introduction 

In 1942 I.W. Burr[1] published a system of cumulative distribution functions 

(cdfs) that might be useful "for purposes of graduation", he has suggested twelve types. 

Special attention has been devoted to the type XII and type X in modeling lifetime data or 

survival data. The Burr Type XII has the following distribution function for 0>X :  

 

0>0,>;)(11=),;( bpxbpxF pb   (1.1) 

 And the density function of Burr Type XII for 0>X  denoted by BurrXII( bp, ) is  

0>0,>;)(1=),;( 1)(1 bpxpbxbpxf pbb    (1.2) 

 

Burr Type XII distribution has different special cases of life time distributions, 

one of them is the Weibull distribution when =p . In life-testing experiments, one 

often encounters situations where it takes a substantial amount of time to obtain a 

reasonable number of failures necessary to carry out reliable inference, so censored 

samples are used for analyzing lifetime data. Among various censoring schemes, the 

Type II progressive censoring scheme has become very popular one in the last decade. It 

can be described as follows: let n  units be placed on test at time zero with m failures to 

be observed. At the first failure a number 1r  of the surviving units 1)( n  are randomly 

selected and removed from the experiment. At the second observed failure, 2r  of the 
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surviving units 2)( 1  rn  are randomly selected and removed from the experiment, and 

so on until the m-th failure is observed. The all remaining surviving units 

121 ...=  mm rrrmnr  are removed.We denote to progressively Type II censoring 

with scheme ),...,,,,( 21 mrrrmn . Traditional Type II censoring scheme is included when 

0)==...==( 121 mrrr  and )=( mnrm   and complete sampling scheme when )=( mn  

and 0)===...=( 11 mm rrr  . Balakrishnan and Aggarwala[2] and Balakrishnan[3] present 

a study on different features of progressive censoring schemes. 

 

In stress-strength model, the stress (Y) and the strength (X) are treated as random 

variables and the reliability of a component during a given period is taken to be the 

probability that its strength exceeds the stress during the entire interval, i.e. the reliability 

R of a component is )<(= XYPR . For a particular situation, if we consider Y as the 

pressure of a chamber generated by ignition of a solid propellant and X as the strength of 

the chamber. Then R represents the probability of successful firing of the engine. Stress-

strength model can be used as a general measure of the difference between two 

populations and has applications in many area. For example comparing two treatments X 

and Y, then )<(= XYPR  is the measure of the response of treatment X. For other 

applications see Kotz et al.[4]. Many authors considered the problem of estimating the 

stress-strength parameter based on complete samples, it first considered by Birnbaum[5]. 

Johnson[6] present a good review on stress-strength model in reliability. Awad and 

Charraf [7] studied the case when X and Y are independent Burr random variables of 

type XII, they obtained maximum likelihood, uniformly minimum unbiased (MVUE) and 

Bayesian estimates of R. Ahmed et al. [8] consider this problem when X and Y are two 

independent random variables have Burr Type X distribution. Based on censored samples 

Saraço g


lu et al.[9] obtained the estimation for R based on exponential distribution with 

type II progressive censoring. Abd-Elfattah et al.[10] get the estimation of R based on 

Weibull distribution with type II progressive censoring, they discussed two cases the first 

when X and Y have common shape parameter and different scale parameters while the 

second case when X and Y have common scale parameter and different shape parameters. 

For some of the recent references, the readers may refer to [11-13].  

 

In the present paper, the study the estimation of )<(= XYPR  when X and Y are 

two independent but not identically random variables belonging to burr type XII 

distribution with two parameters. In Section (2), maximum likelihood estimator of 

reliability R is obtained in two subsections first when the common parameter b is 

unknown while the second when b is known. UMVUE of R and Bayes estimator when b 

is known are obtained in sections (3) and (4) respectively. Numerical results using 

simulations are presented in Sections (5).Some concluding remarks given in section (6).  
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MLE of R 

 

In this section the MLE of R is obtained. Let X and Y are two independent Burr 

Type XII random variables with parameters (p,b) and (q,b) then R is:  

dydxyfxfXYPR
x

)()(=)<(=
00 



 

dydxyqbyxpbx qbbpbb
x

1)(11)(1

00
)(1.)(1= 



 qp

q


=

                                                 

(2.1) 

So we deal with two cases when the common parameter b is unknown and known which 

are mentioned in the following subsections. 

 

If common parameter b is unknown 

 

Let 
1

:
1

:
11

:
1

:1 ,...., nmmnm XX  be a progressive censored sample from BurrXII(p,b) with 

progressive censoring scheme ),...,,,(
1

111 mrrmn , and let 
2

:
2

:
22

:
2

:1 ,...., nmmnm YY  be a 

progressive censored sample from BurrXII(q,b) with progressive censoring scheme 

),...,,,(
2

122 mssmn , then the jointly likelihood function L(p,q,b) is  
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Where 1k  and 2k  are:  

)...1)...(2)(1(= 1
1

1112111111  mrrmnrrnrnnk )3.2()...1)...(2)(1(= 1
2

1222121222  mssmnssnsnnk
 

 

Now the log-likelihood function  is:  

)(1))(1(1

)(1))(1(11)(
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(2.4) 

 By differentiation on equation (2.4) with respect to p, q and b, and setting the results 

equal to zero. Then we get:  

(2.5)0=)(1)(1=
1
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1 b
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xlnr
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(2.7) 

 From equations (2.5),(2.6) and (2.7), we get  
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We can obtain b̂  by solving the 

following non-linear equation:  
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This equation can be solved numerically using Newton Rhapson Method with initial 

values closed to real values of parameters. Then MLE of R is  

)11.2(
ˆˆ

ˆ
=ˆ

qp

q
R

  

 

If common parameter b is known 
 

Assume b is known, then without loss of generality we can assume that 1=b . 

Then let 
1

:
1

:
11

:
1

:1 ,...., nmmnm XX  be a progressive censored sample from BurrXII(p,1) with 

progressive censoring scheme ),...,,,(
1

111 mrrmn , and let 
2

:
2

:
22

:
2

:1 ,...., nmmnm YY  be a 

progressive censored sample from BurrXII(q,1) with progressive censoring scheme 

),...,,,(
2

122 mssmn . Then from equations (2.8), (2.9)  
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Now consider 2
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Then the )%100(1   exact confidence interval of R is:  
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 Where   is the level of significance and 
21,22 mm  are the degree of freedom of F. 

 

UMVUE of R 

In this section the uniformly minimum variance unbiased estimator (UMVUE) is 

obtained for stress-strength parameter R. Let 
1

:
1

:
11

:
1

:1 ,...., nmmnm XX  be a progressive 

censored sample from BurrXII(p,b) with progressive censoring scheme ),...,,,(
1

111 mrrmn , 

assuming the common parameter b is known. The log-likelihood function of X is:  
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                                                                     (3.1) 

 Where 1k  mentioned in equation (2.3). Then from equation (3.1) we obtained that 

)(1)(11
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b

ii
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i
xlnr   is a sufficient statistics for p . Similarly for the progressive censored 

sample 
2

:
2

:
22

:
2

:1 ,...., nmmnm YY  from BurrXII(q,b) with progressive censoring scheme 

),...,,,(
2

122 mssmn , we obtained that )(1)(12
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b
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j
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)(1= b

ii XlnT  , consider the following transformations:  
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Balakrishnan & Aggarwala [2] show that s

iZ ,  are independent & identically distributed 

exponential random variables with mean p  moreover 
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Then T has a gamma distribution with shape parametereter 1m  and scale parameter p  

with probability density function:  
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Lemma 3.1 The conditional p.d.f. of )(1= 11

bXlnT   given T  is:  
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From equations (3.7),(3.4), we get the result.  
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Lemma 3.2 The unbiased estimator of R is:  
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Where the distributions of order statistics 1X  and 1Y  are  
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Theorem 3.3 Based on the sufficient statistics T and E, as defined before for p and q 

respectively and the unbiased statistics  , the UMVUE of R , say R
~

, for 21 m  and 

22 m  can be expressed as follows: 
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Proof. For ET <  using the Rao-Blackwell theorem  
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Bayes Estimator of R 

 

In this section the Bayes estimator of R is obtained when the parameters p and q 

are random variables. For both populations of X and Y we assume that the common 

parameter b is known. Now assume we have the Gamma priors for p and q with the 

following probability density functions  
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Here 211 ,,   and 0>2   

Let 
1

1,..., mXX  be a progressive censoring sample of X, the Likelihood function of X is:  
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Where 1k  is defined in equation(2.3). Now to find the posterior distribution we should 
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Both p  and q  are independent then we can find the joint posterior function of p and q:  
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 Using equation (4.9), Bayes estimator of R, say BSR̂ , under squared error loss function is  
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                                                                                                                                      (4.10) 

 The final form of BSR̂  in equation(4.10)is calculated using Mathematica program.  

 

Simulation Study 

 

Within this section, the Monte Carlo simulation is performed to check the 

performance of the different estimators of R under several types of progressive censoring 

schemes. Samples are generated under progressive type-II censoring with many different 

schemes for the (n-m) removed items. This schemes are described as follows: 

 

Scheme I: complete sample (n=m)i.e there is no removed items.  

Scheme II: )=0,=0,...,=( 11 mnrrr mm    

Scheme III: 0)=0,=,...,=( 11 mm rrmnr  .  

Scheme IV: The remaining items (n-m)are removed equally at each failure time. 

For example if n=10 and m=5 then scheme IV become 1)=1,...,=1,=( 521 rrr .  

 

Different values of parameters (1,10,8)(1,10,5),=),,( qpb  are used. Simulation is 

performed 1000 times with different sample sizes 10,20,30=, 21 nn  and the number of 

failures ,305,10,15,20=, 21 mm  for X and Y. The average estimates of MLE for R in case 

of b is unknown and average MSE‘s are reported is Table 1. Also the MLE, UMVUE and 

95% exact confidence interval of R when b is known are obtained and the average 

estimates and average MSE‘s are reported is Table 2, 3. Also simulation is constructed 

1000 times for Baysian estimator of R suggested in Section (4), and the averages of 

estimates and MSE‘s are reported in Table 4 with the following configurations for the 

parameters of priors of qp,  : 0,1,2,20=1 , 0,1,2,20=1  and 0,1=1 ., 0,1=2 .  

 

We note that in such cases as the effective sample size increases the estimates of 

R become better. When mn =  i.e in case of complete samples the biased is decreased. 

Also when ),(=),( 2211 nnmn  the estimates are good. We note that MLE of R give results 

better than the UMVUE of R and Bayes estimator. Bayes estimator depend on the prior 

parameters of qp, . We note that the results become better when the values of 121 ,,   

and 2  tends to zero, and when 21,  greater than 21,  as in case of (20,0)=),( 11   

and (20,0)=),( 22   
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Conclusion 

 

We have presented some efficient estimators of the stress-strength parameter R 

using MLE, UMVUE and Bayes estimator methods. The methods are very efficient. We 

have found that, our estimates of R using progressive censoring schemes are very close to 

estimates in case of complete samples so this estimates are better to accelerate the life 

testing. This work gives a general estimates since the case when sample sizes equal the 

number of failures is a special case. The exact confidence intervals of R based on MLE 

when parameter b is known are obtained. Choice of sample sizes and number of failures 

are affect on the estimates. Also choosing the hyper parameter values of priors 

distributions of p and q affect on the Bayes estimates. We note that MLE is more 

effective than the other methods. Numerical results are presented which exhibit the 

performance of the proposed methods.  
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